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Abstract

Coupled physical and biological data assimilation is performed within the

California Current System using model twin experiments. The initial condi-

tion of physical and biological variables is estimated using the four-dimensional

variational (4DVar) method under the Gaussian and lognormal error distri-

butions assumption, respectively. Errors are assumed to be independent,

yet variables are coupled by assimilation through model dynamics. Using a

nutrient-phytoplankton-zooplankton-detritus (NPZD) model coupled to an

ocean circulation model (the Regional Ocean Modeling System, ROMS), the

coupled data assimilation procedure is evaluated by comparing results to ex-

periments with no assimilation and with assimilation of physical data and
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biological data separately. Independent assimilation of physical (biological)

data reduces the root-mean-squared error (RMSE) of physical (biological)

state variables by more than 56% (43%). However, the improvement in bio-

logical (physical) state variables is less than 7% (13%). In contrast, coupled

data assimilation improves both physical and biological components by 57%

and 49%, respectively. Coupled data assimilation shows robust performance

with varied observational errors, resulting in significantly smaller RMSEs

compared to the free run. It still produces the estimation of observed vari-

ables better than that from the free run even with the physical and biological

model error, but leads to higher RMSEs for unobserved variables. A series

of twin experiments illustrates that coupled physical and biological 4DVar

assimilation is computationally efficient and practical, capable of providing

the reliable estimation of the coupled system with the same and ready to be

examined in a realistic configuration.

Keywords: Coupled data assimilation, Biogeochemical model, 4DVAR,

California Current System Keyword

1. Introduction1

Marine ecosystem and biogeochemical models coupled to realistic ocean2

circulation models are applied routinely today for an extensive range of stud-3

ies, such as primary production (Franks and Chen, 2001), ecosystem phenol-4

ogy (Chenillat et al., 2013), biogeography (Follows et al., 2007, Goebel et al.,5

2010), nutrient cycling (Fennel, 2010), air-sea carbon exchange (Chai et al.,6

2009) and climate change (Cox et al., 2000, Behrenfeld et al., 2006, Stock7

et al., 2011). Despite real advances in the representation of complex biolog-8
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ical interactions and improvements in physical circulation modeling, many9

factors still contribute to errors in model output, including imperfect param-10

eterization of biological and physical processes at both resolved and subgrid11

scales. In realistic applications in which ocean state estimates at particular12

times are sought, for example as part of an ocean observing system, addi-13

tional errors result from uncertainties in ocean model initial conditions and14

applied forcing.15

One approach to improving model fidelity for ocean state estimation is16

through data assimilation in which model estimates are constrained through17

adjustment of control variables to better match available observations. Devel-18

opments in data assimilation in physical oceanography for over two decades19

now provide many estimates of the physical ocean state at global (Behringer20

et al., 1998, Bell et al., 2000, Chassignet et al., 2007, Köhl et al., 2007,21

Balmaseda et al., 2008, Carton and Giese, 2008) and regional (Oke et al.,22

2008, Cummings et al., 2009, Broquet et al., 2009, Shulman et al., 2009, Ku-23

rapov et al., 2011, Matthews et al., 2012, Sakov et al., 2012) scales. Data24

assimilation techniques have been developed to a lesser extent in biological25

oceanography, though their application has been used for both the determi-26

nation of poorly known model parameters (e.g., Matear, 1995, Spitz et al.,27

1998, Losa et al., 2004, Mattern et al., 2012, Roy et al., 2012, Doron et al.,28

2013, Simon et al., 2015) as well as quantitative improvement in modeled29

biological fields (see Gregg (2008) and Edwards et al. (2015) for reviews).30

Data assimilation in physical-biological coupled systems has focused gen-31

erally on either physical or biological data assimilation in isolation. Better32

representation of the ocean circulation by physical data assimilation is ex-33
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pected to improve the distribution of biological variables. Studies focusing on34

the impact of physical data assimilation on biological fields include Oschlies35

and Garçon (1998), Miller et al. (2000), Berline et al. (2007) and Fiechter36

et al. (2011). For example, Oschlies and Garçon (1998) assimilate satellite37

estimates of sea surface height (SSH) over the North Atlantic to improve38

the eddy representation in the physical model, which provides currents for a39

coupled biological model. They report that the nitrate flux into the euphotic40

zone is increased by improving the underestimated mesoscale eddy activity in41

the free simulation. Raghukumar et al. (2015) present a counter example in42

which physical data assimilation alone can drive spurious nutrient fluxes into43

the euphotic zone degrading ecosystem model performance. Improvements in44

biological fields have also resulted from assimilation of biological fields alone,45

where physical fields have been assumed a priori to be sufficiently accurate or46

already modified through physical data assimilation (e.g., Friedrichs, 2001,47

Garcia-Gorriz et al., 2003, Natvik and Evensen, 2003, Hoteit et al., 2005,48

Triantafyllou et al., 2007, Ciavatta et al., 2011, Rousseaux and Gregg, 2012,49

Ford et al., 2012, Hu et al., 2012). For example, Garcia-Gorriz et al. (2003)50

assimilate the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data into51

an NPZ model coupled to a 3D ocean model over the Adriatic Sea, improving52

ecosystem parameters to reduce misfits between observations and the model53

output. Natvik and Evensen (2003) use SeaWiFS data to fit an 11-component54

biochemical model coupled to a 3D ocean circulation model configured over55

the North Atlantic. Using an ensemble Kalman filter approach, they adjust56

state variables and show that multivariate biochemical data assimilation can57

not only improve the representation of an observed variable but also reduce58
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the variance of unobserved variables.59

A few studies have addressed the assimilation of both physical and bi-60

ological data into coupled models and its advantages over the fit to either61

physical or biological data alone. Using an optimal interpolation approach62

applied to the Gulf Stream region, Anderson et al. (2000) find that dynam-63

ically consistent physical and biological fields created through joint physi-64

cal and biological assimilation are superior to those obtained through either65

physical or biological data assimilation alone. In a sequential data assimila-66

tion study of the North Atlantic, Ourmières et al. (2009) find that ecosystem67

state estimates are improved through assimilation of both physical (sea sur-68

face temperature (SST), SSH and climatological temperature (T) and salin-69

ity (S)) and biological (nitrate climatology) data more than through physical70

data assimilation alone. Indeed in their results, physical data assimilation71

alone may degrade ecosystem estimates, depending on the accuracy of the72

nitrate background state. In a study of Monterey Bay, Shulman et al. (2013)73

report that substantial improvement in biological estimates did not result74

from physical assimilation alone but required assimilation of biological fields75

or updates to biological fields (nitrate) through statistical relations. Simon76

et al. (2015) perform two steps of assimilation using an ensemble Kalman77

filter in coupled physical and biological state estimation. After fitting the78

model to SST, along-track sea level anomalies and ice concentration obser-79

vations, they assimilate 8-day composite chlorophyll data to estimate the80

biological states and parameters in log-transformed space. A stronger error81

reduction results from assimilating all observations, but physical and biolog-82

ical components are independent during assimilation.83
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To date biological assimilation efforts on adjusting state variables have84

largely used sequential methods, based on optimal interpolation or Kalman85

filter approaches. In particular, Bertino et al. (2003) applied Gaussian anamor-86

phosis to biogeochemical variables with the non-Gaussian distributions in87

the ensemble Kalman filter. This transformation satisfies the assumption of88

Gaussian error distribution and they show promising results in fitting 1-D89

numerical ecosystem model to observations. Recently, a four-dimensional90

variational assimilation method appropriate for ocean ecosystem variables91

was studied in an idealized 1-dimensional context (Song et al., 2012). This92

method accounts for the non-Gaussian statistics of ecosystem variables by as-93

suming lognormal statistics following Fletcher and Zupanski (2006). In Song94

et al. (2016a), this approach is modified and implemented within a realis-95

tic ocean circulation model (ROMS; the Regional Ocean Modeling System).96

The modification includes a linearization of the log-transformation function97

to enable efficient searching for the cost function minimum. Although the lin-98

earization requires the exclusion of observations whose values substantially99

exceed the background state, the modified log-transformed 4DVar outper-100

forms the conventional 4DVar (which assumes Gaussian error distributions)101

both in terms of RMSE and non-negativity in a series of model twin experi-102

ments configured for the California Current System (Song et al., 2016a).103

In this study, we extend that work by developing the ability to jointly104

assimilate physical and biological data within ROMS. The four-dimensional105

variational (4DVar) method provides dynamically consistent state estimates106

within each assimilation cycle. Coupled dynamics within the tangent linear107

and adjoint models of the 4DVar system have the potential to enable both108
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physical data to improve biological fields and biological data to improve phys-109

ical fields. In most sequential data assimilation methods the latter is possible110

only through statistical adjustments and not directly through model dynam-111

ics. We investigate the advantage of coupled data assimilation using both112

physical and biological data by comparing results from multiple runs: no113

data assimilation, physical data assimilation alone, biological data assimila-114

tion alone, and joint physical and biological assimilation. Using model twin115

experiments, we fit the coupled model to pseudo observations of SST, SSH,116

in situ temperature and salinity, and surface chlorophyll data. The statisti-117

cal analyses highlight the advantage of the coupled data assimilation in the118

present model configuration.119

The organization of this paper is as follows. A brief introduction to phys-120

ical and biological variational data assimilation method is given in section121

2. Section 3 describes the twin experiment design to evaluate the coupled122

data assimilation system and its performance is presented in section 4. We123

summarize results and provide a discussion in section 5 to end the paper.124

2. Coupled variational data assimilation125

It is desirable to perform physical and biological data assimilation simul-126

taneously rather than independently because (a) it is computationally more127

efficient to carry out a single assimilation procedure with a larger model128

than to perform two sequential but smaller assimilation operations and (b)129

the physical and biological fields are coupled through model dynamics. This130

coupling enables biological observations to constrain physical fields and vice131

versa, in principle leading to improved state estimates over results from in-132
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dependent (i.e., uncoupled) physical and biological assimilation. In practice,133

however, the beneficial results of coupled assimilation must be demonstrated,134

and issues such as model error and observational uncertainty may limit the135

ultimate improvements obtained through coupled state estimation.136

Fundamentally, the basic error assumptions for physical and biological137

data assimilation are different. Errors in physical variables are assumed to138

be Gaussian distributed, whereas errors in biological variables are better139

represented by lognormal distributions (Campbell, 1995, Simon and Bertino,140

2009); as a result, the assumption of Gaussian-distributed errors is appro-141

priate for physical but not biological variables. Here, we present a method142

for combining the two different 4DVar approaches by following Fletcher and143

Zupanski (2006), Fletcher (2010) and Fletcher and Jones (2014). Although144

the state vector could include initial conditions, boundary conditions, sur-145

face forcing fields, and biological parameters, we consider here for simplicity146

a control vector consisting only of the initial state x0.147

We first adapt the incremental form of 4DVar following Song et al. (2016a).148

If the posterior initial condition x0 is written as the sum of the background149

state xb,0 and a (small) increment δx0, then xo
i = Hi(Mi,0(xb,0 + δx0)) ≈150

Hi(Mi,0(xb,0)) + HiMi,0δx0, where the nonlinear model Mi,0 integrates the151

state vector from t = t0 to t = ti, and the observation operator Hi maps152

model states to observation space and xb,0 is the background state vector.153

The matrices Hi and Mi,0 are the tangent linear forms ofHi andMi,0, respec-154

tively. In this case, the cost function JG appropriate for Gaussian-distributed155
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variables becomes156

JG(δx0) =
1

2
δxT

0 B−1
G δx0

+
1

2

No∑
i=1

(dg,i −HiMi,0δx0)
TR−1

G,i(dg,i −HiMi,0δx0), (1)

where dg,i = yi − xo
b,i = yi −Hi(Mi,0(xb,0)) define the innovations.157

Similarly, the cost function JL for lognormally-distributed variables is158

expressed in terms of increments δg0 = ln x0 − ln xb,0 as159

JL(δg0) =
1

2
δgT

0 B−1
L δg0

+
1

2

No∑
i=1

(dl,i −OL,iHiMi,0XLδg0)
T R−1

L,i

(dl,i −OL,iHiMi,0XLδg0) , (2)

where dl,i = ln yi − ln xo
b,i = ln yi − ln(Hi(Mi,0(xb,0))). The diagonal matri-160

ces OL,i and XL are introduced during the linearization of ln and exp function161

(Song et al., 2016a) where specifically, OL,i = diag[(xo
b,i)1, (xo

b,i)2, . . . , (xo
b,i)mi

]−1
162

and XL = diag[(xb,0)1, (xb,0)2, . . . , (xb,0)nl
]. A total of mi lognormally-163

distributed observations exist at t = ti, and a total of nl lognormal variables164

exist within the model.165

The state vector increment in the coupled, physical and biological system166

is defined as δz = [δxT
0 δgT

0 ]T . The state vectors for physical and biological167

variables have dimensions (ng × 1) and (nl × 1), respectively. Hence the size168

of δz0 is simply (n× 1), where n = ng +nl. Then a compact form of the cost169
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function can be written as170

J(δz0) =
1

2
δzT

0 B−1δz0

+
1

2

No∑
i=1

(
di −O−1

i HiMi,0Xδz0

)T
R−1

i(
di −O−1

i HiMi,0Xδz0

)
, (3)

where dT
i = [dT

g,i dT
l,i], Oi = diag[1, 1, . . . , 1, (xo

b,i)1, (xo
b,i)2, . . . , (xo

b,i)mi
]171

and X = diag[1, 1, . . . , 1, (xb,0)1, (xb,0)2, . . . , (xb,0)nl
]. Error covariances172

B and Ri consist of error covariances for physical and biological components173

and their cross covariances.174

The gradient of J(δz0) with respect to δz0 is given by175

∂J

∂δz0

= B−1δz0 −XT

No∑
i=1

MT
0,iH

T
i O−T

i R−1
i

(
di −O−1

i HiMi,0Xδz0

)
,(4)

and we seek a solution δz0 that satisfies ∂J/∂δz0 = 0. The optimal δz0176

is identified iteratively by applying a conjugate gradient descent algorithm177

using the Lanczos formulation (Moore et al., 2011c).178

3. Experiment design for the coupled data assimilation system179

evaluation180

We evaluate the performance of the new system by comparing results181

from multiple data assimilation experiments with a free run. For clarity of182

description, we distinguish between the coupled nonlinear model and the183

coupled data assimilation system by referring to the former as the forward184

model with no data assimilation. The free run results exclusively from the185

integration of the forward model.186
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We perform three data assimilation runs: the physical data assimilation187

(PDA) run, the biological data assimilation (BDA) run and the coupled188

data assimilation (PBDA) run. In the PDA run, physical data are used to189

constrain both physical and biological variables in the forward model. In the190

BDA run, only biological data are used to constrain physical and biological191

variables in the forward model. Third, both physical and biological data are192

used to constrain the physical and biological variables in the coupled model,193

and is referred to as the PBDA run. The PDA (BDA) applies Gaussian194

(Lognormal) 4DVar to fit the coupled model to the data. The PBDA fits195

both physical and biological data into the coupled model using a hybrid196

Gaussian and lognormal 4DVar approach.197

Some additional experiments were performed to better evaluate the im-198

pact of model dynamics within the coupled assimilative system. Specifically,199

we modify the BDA experiment by reducing the control vector to include200

only biological variables alone (BDAb) or physical variables only (BDAp).201

Similarly, we consider the PDA experiment, but with adjustments to only202

the physical (PDAp) or biological (PDAb) variables. While physical state203

variables in the forward model clearly influence biological variables (e.g.,204

through transport and mixing), biological variables generally do not alter205

physical variables in the forward model. In nature, chlorophyll pigments206

quantitatively impact light absorption and thus heat flux within the water207

column (Morel, 1988, Lewis et al., 1990, Frouin and Iacobellis, 2002, Mur-208

tugudde et al., 2002, Park et al., 2015), but this feedback is not included in209

the present model implementation. As a result, any misfit with respect to210

physical data cannot be reduced by adjusting the initial conditions of biolog-211
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ical variables. Therefore, the physical data misfit is identical for PDAp and212

PDA, and for PDAb and the free run.213

3.1. Model214

We use a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) biolog-215

ical model coupled to ROMS, a 3-dimensional ocean circulation model, con-216

figured for the California Current System. This implementation has been217

applied repeatedly as a useful testbed for various developments of the ROMS218

4DVar system (Broquet et al., 2009, 2011, Moore et al., 2011b,a). The model219

domain extends from the middle of the Baja Peninsula to the Washington220

coast and offshore to 137W. The horizontal model resolution is 1/30 degree,221

and it includes 30 terrain-following levels in the vertical. The configuration222

used here is identical to that testing the lognormal 4DVar in isolation and223

described in Song et al. (2016a), which provides additional details of the224

configuration, including the parameters used for the NPZD model.225

Model twin experiments are an excellent way to evaluate the performance226

of data assimilation schemes because the true state is known exactly and the227

error statistics can be controlled. A 4-year forward simulation, begun on228

January 1st, 2001, represents the “true” ocean state. A data assimilated run229

described by Broquet et al. (2009) provides the physical initial conditions.230

Biological initial conditions were obtained from the final state of a 45-year231

forward spin-up run described in Song et al. (2016a). Surface forcing and232

boundary conditions were derived from the output of the Coupled Ocean233

Atmosphere Mesoscale Prediction System (COAMPS) (Doyle et al., 2009)234

and the Simple Ocean Data Assimilation (SODA) (Carton and Giese, 2008)235

product, respectively.236
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Although real data is not used in the present experiments, we present an237

evaluation of the forward simulation using satellite derived estimates of sea238

surface temperature (AVHRR Pathfinder V5 SST, 0.44 degree resolution)239

and surface chlorophyll-a (SeaWiFS, 0.036 degree resolution) obtained from240

http://las.pfeg.noaa.gov/oceanWatch. Model chlorophyll is estimated using241

a constant carbon to chlorophyll ratio of 50 g C (g chl)−1 and a Redfield242

ratio to convert model units of nitrogen to carbon. The model yields phyto-243

plankton bloom-like patterns, intensity and spatial distribution comparable244

to satellite data (Song et al., 2016a). Monthly average fields are used to cal-245

culate the bias (model minus data), normalized by the standard deviation,246

and correlation coefficient (Figure 1). The standard deviation is estimated247

at each grid cell using the output from the model spin-up. Although SST in248

the simulation has a warm bias overall (1 ◦C), the correlation coefficient (r)249

is very high (r̄ = 0.92), indicating a good representation of the annual cycle250

in the model. Surface chlorophyll-a is biased low offshore and very near the251

coast north of 44◦N, and biased high along the northern and central Cali-252

fornia coast out into the coastal transition zone (Brink and Cowles, 1991).253

On average, the model is biased low by approximately 0.5 mg m−3. The254

correlation coefficient for chlorophyll-a reveals generally positive values over255

the whole domain.256

3.2. Data257

Physical and biological data are sampled from the true state. SSH and258

SST are observed at all grid points once per day (we assume no data dropouts259

due to cloud cover). In situ temperature and salinity profiles are obtained260

at times and locations based on the EN3 data set (Ingleby and Huddleston,261
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2007), which includes observations from the California Cooperative Fisheries262

Investigations (CalCOFI) surveys, as well as Argo and glider data within263

our model domain. For biological assimilation, only surface phytoplankton264

is used, analogous to what might be obtained under cloud-free conditions265

from satellite ocean color data. We note that our data collection for surface266

fields is larger than occurs in nature (approximately 13% data coverage on267

our model domain in the year 2000), but allows investigation of a best-case,268

data-rich scenario. Assimilation of real data is performed in Song et al.269

(2016b)270

Observation errors are added to the sampled data. Errors for physical271

variables are drawn from normal random distributions (N (0, 0.12),N (0, 0.012),272

N (0, 0.022) and N (0, 0.12) for in situ temperature, salinity, SSH and SST,273

respectively). The observational error levels for in situ temperature, salin-274

ity and sea surface height were adopted from Broquet et al. (2009), where275

the same data assimilation system was used to fit the data in the same276

domain. The observational error level for SST is close to the global stan-277

dard deviation of errors (0.13K for AVHRR) (O’Carroll et al., 2012). Errors278

in phytoplankton biomass data were drawn randomly from N (0, 0.22) and279

added in log-transformed space. This distribution approximately corresponds280

to a 20% multiplicative error which is lower than uncertainty estimates for281

global chlorophyll data (Gregg and Casey, 2004, Moore et al., 2009). We also282

consider sensitivity experiments in which the observational error for SST is283

elevated to 0.4◦C and for phytoplankton is increased to 35% and 50%.284
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3.3. Assimilation setup285

Following the method presented in Weaver and Courtier (2001), the back-286

ground error covariance is factorized as B = ΣCΣT , where Σ is a diagonal287

matrix whose diagonal elements are model standard deviations and C is288

a correlation matrix. Standard deviations are computed from the 4-year289

forward simulation. The background error covariance BL is for ln x, and290

therefore biological variables should be log-transformed before computing291

the standard deviation. The correlation matrix C is obtained through so-292

lution of a diffusion equation (Weaver and Courtier, 2001), and we apply293

horizontal and vertical length scales of 50 km and 30 m, respectively. It is294

reasonable to expect that in general physical and biological variables have295

different decorrelation length scales; for example, Lagrangian measurements296

in offshore portions of the CCS reveal different decorrelation time-scales for297

chlorophyll-a and temperature by Abbott and Letelier (1998). In this study,298

we assume that the length scales are identical. Song et al. (2016b) discuss299

the requirements of a smaller vertical decorrelation length scale for biological300

variables than physical variables in the fully realistic assimilation scenario.301

The set of experiments proceeds in sequences of 5-day assimilation cycles.302

Although Veneziani et al. (2009) has shown that the tangent linear assump-303

tion in the physical model is reasonable over a time-scale of 14 days, a shorter304

time-scale is required for biological models due to the inherent nonlinearities305

of the biological interactions. Song et al. (2016a) find that a time-scale of 5306

days is reasonable for the NPZD model and the California Current System307

implementation.308

We examine the coupled assimilative system over the 4-year period 2001–309
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2004, divided into 48, 30-day experiments. Every 30-day experiment consists310

of 6 sequential assimilation cycles, each extending for 5-days. The initial con-311

dition on the first day of each experiment is the 4-year mean state obtained312

for that particular day obtained from the true run. Within each experiment,313

the state estimate at the end of one cycle is used to initialize the background314

estimate for the next 5-day cycle. In our analysis, the first cycle of each ex-315

periment is treated as a spin-up cycle when the linear approximation is the316

least accurate (Song et al., 2016a) and not included in the statistical results.317

Although we recognize that cross-covariances between model variables318

exist, we calculate univariate correlations only, and we assume that obser-319

vation errors are independent and uncorrelated. These assumptions simplify320

the construction of error covariances B and Ri, with321

B =

BG 0

0 BL

 (5)

and322

Ri =

RG,i 0

0 RL,i

 . (6)

For simplicity, we take this highly simplified approach but acknowledge that323

accurate cross-correlations between model variables should yield additional324

improvements in coupled biological and physical state estimation.325

The reformulation of lognormal 4DVar to the quadratic cost function cre-326

ates an additional linearization approximation. The logarithmic transforma-327

tion of the model state in observation space is linearized using Taylor series328

whose necessary condition is that the difference between the model state and329

observations is small. In order to satisfy this condition, we filter observations330
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such that those more than twice the modeled state are excluded from the as-331

similation procedure (Song et al., 2016a). While this procedure reduces the332

total number of assimilated observations it helps ensure the stability of the333

data assimilation calculations.334

We also perform sensitivity experiments for the year 2001 to understand335

how increased observational error and the ability of the model to represent336

truth impact results. We consider experiments in which either or both SST337

and phytoplankton observational error are increased from their original val-338

ues. In addition, the coupled data assimilation system is examined after339

purposely introducing model error. Physical model error is introduced by340

applying surface forcing from the year 2002, and biological model error is341

obtained by applying different biological parameter values than the reference342

run. Those parameters are listed in Table 1. Physical and biological model343

errors are included in the assimilative runs either separately or jointly.344

4. Performance of the coupled data assimilation system345

4.1. The improvement in the Root-mean-squared error346

Performance is first evaluated using the root-mean-squared error (RMSE).347

RMSEs for surface physical variables – zonal velocity (u), meridional veloc-348

ity (v), SST, and SSH – are significantly improved by coupled assimilation349

of physical variables (PDA) (Figure 2). Using the forward model provides350

better prediction skill than persistence, but assimilating physical observa-351

tions further decreases RMSE. The mean error reduction from the free run352

for physical variables is approximately 56% with improvement in both ob-353

served variables (SST and SSH) and unobserved variables (u and v). RMSE354
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reduction is larger for observed variables than in unobserved variables, as ex-355

pected. Coupled assimilation of biological data (BDA) also decreases RMSE356

for physical variables by about 13% from the free run on average, indicat-357

ing that surface phytoplankton observations can improve initial conditions358

for current, SSH and SST entirely through the dynamics of the coupled sys-359

tem. Tracers are influenced by advection and diffusion, and because the360

adjoint model includes these coupled dynamics, cost function reduction can361

be achieved through alteration of physical as well as biological variables.362

RMSE reduction is greatest, approximately 57% on average with respect363

to the free run, when assimilating both physical and biological data (PBDA).364

The modest improvement over PDA indicates that the physical fields are365

most constrained by the physical data provided in this experiment. It is366

noted that PBDA does not always lead to the improvement over PDA. The367

RMSE of PDA for SSH is slightly lower than what PBDA offers, but within368

the error bars (0.980± 0.017 cm versus 0.985± 0.014 cm). In a case of SST,369

PBDA has lower RMSE (0.310±0.006 ◦C) than PDA (0.314±0.006 ◦C), but370

again within error bars. Although the improvement by PBDA over PDA is371

statistically marginal for u and v, it is negligible compared with the RMSE372

reduction from the free run to PDA.373

PDA and PBDA reduce the RMSEs for the observed variables (SST and374

SSH) more than half almost everywhere (Figure 3(c,d,k,l)). Although the375

reduction of RMSE by BDA is less than 20%, BDA reduces the RMSE of376

SST and SSH over the entire region (Figure 3(g,h)). Surface currents are377

not assimilated, and RMSE reduction in those variables is smaller than for378

SST or SSH. There are regions even with the increased RMSE. For instance,379
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PDA shows approximately 20% higher RMSE for u near the coast between380

40◦N and 45◦N (Figure 3(a)). Although the RMSE reduction for u and v by381

BDA is smaller than for PDA, it occurs over the all model domain (Figure382

3(e,f)). PBDA yields the best estimate of surface currents, resulting in the383

smallest RMSE. Interestingly, the increased RMSE for u by PDA in Fig-384

ure 3(a) became less obvious when assimilating both physical and biological385

observations.386

Forward simulation of the NPZD model improves the estimation of bi-387

ological variables as the RMSEs of the free run are smaller than the result388

from one-month persistence. Assimilating data provides a better estimate389

for biological variables, further reducing the RMSEs for biological variables390

with respect to the free run. In BDA, incorporating surface phytoplank-391

ton data improves the estimate of not only phytoplankton but also other392

unobserved biological variables. RMSE reduction of biological variables is393

approximately 43% on average with respect to that by the free run. PDA394

also improves the estimate of biological variables by approximately 7%, and395

this improvement results not from the adjustment of biological initial con-396

ditions but from the improved representation of the circulation fields. As397

described above, biological variables are passively coupled to the currents,398

and therefore the sensitivity of the misfits in physical variables to variations399

in the biological variables is zero. Improvements in T, S and SSH cannot be400

reduced by changes in biological variables at the initial time. As in the eval-401

uation of physical variables, greatest RMSE reduction (∼49% on average)402

for biological variables occurs through coupled assimilation of both physical403

and biological data (PBDA), and this reduction is statistically significant.404
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Assimilating physical variables leads to mixed effects on the biological405

state estimation at the surface. Figure 5(a-d) show that PDA has a pos-406

itive effect near the coastal regions but generally degrades the biological407

estimation offshore. Changes in RMSEs by PDA are similar in overall mag-408

nitude for all four biological variables. BDA and PBDA result in comparable409

RMSE reduction (Figure 5(e-l)). Largest RMSE improvement using these410

two methods occurs for phytoplankton, the observed variable. The second411

largest reduction in RMSE is seen in detritus. RMSE reduction for P and412

D occurs throughout the model domain. The improvements in zooplankton413

by BDA and PBDA occur mainly near the coast (Figure 5(f,j)). Least im-414

provement is found in the nutrient estimation, and it is visually similar to415

the improvement by PDA (Figure 5(c,g,k)).416

We note that although overall error decreases in all variables, there are417

limited regions where the RMSE increases after assimilating surface phyto-418

plankton, even in PBDA. Such error increases occur most visibly in Z and419

N, but also at one location in D (Figure 5(f,g,j,k)). The NPZD model is a420

simple but highly nonlinear system, sometimes stretching the linear approx-421

imation used in 4DVar systems. In such cases, the increments can degrade422

the posterior estimate. Although this is not limited to our assimilation sys-423

tem, it is possible that degrading increments can be amplified due to the424

transformation back to the original space using the exponential function.425

We note that the limited areas of degradation occur for unobserved vari-426

ables only, indicating that the system improves the phytoplankton estimates427

through occasionally unrealistic changes to variables for which we have no428

information other than background error statistics. Such performance is not429
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surprising in an estimation system, and generally could be improved through430

observation of other ecosystem elements.431

Two additional experiments outlined above better illustrate how modeled432

dynamics in coupled data assimilation influence the final state estimate. In433

BDAb, biological data is assimilated but only biological variables are ad-434

justed. In this case, RMSE in biological fields is reduced by approximately435

35% on average (not shown), less than the reduction by BDA with adjust-436

ments to all variables. In BDA, the coupled data assimilation system parti-437

tions improvements to both physical and biological variables. Adjusting only438

biological fields limits the quantitative improvement in biological fields over439

the full assimilation cycle relative to what can be achieved through adjust-440

ment also of physical fields. RMSE reduction in physical variables is zero in441

BDAb because adjusted biological variables do not affect the physical fields.442

In BDAp physical variables only are adjusted, and misfits in biological443

variables can be reduced only through improvement in circulation and mix-444

ing. Although the phytoplankton biomass RMSE is reduced in this case,445

assimilation generally degrades the estimates of other variables (not shown).446

In particular, physical variables are adjusted such that their RMSEs are447

larger than in the free run. While the misfit in observed variables can be re-448

duced through modification of various fields through coupled dynamics, not449

all adjustments result in a better overall estimate of the unobserved variables.450

4.2. The improvement in the statistical states451

Model performance can be visualized also through a Taylor diagram which452

summarizes the model variability relative to the truth, specifically the corre-453

lation coefficient and standard deviation (Taylor, 2001). PDA (square termi-454
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nator) and PBDA (circular terminator) show substantial improvements in all455

three statistics relative to the prior, especially in observed variables (SST and456

SSH) (Figure 6). Unobserved u and v are also statistically improved when457

physical data are assimilated. For both PDA and PBDA, physical variables458

show about the same amount of variability as the true state, and posterior459

correlation coefficients are greater than 0.8. Statistically, the improvements460

realized by the PDA and PBDA are comparable, implying that physical ob-461

servations in this case provide sufficient information for the optimal physical462

solution. In BDA (triangular terminator), the statistics of the physical vari-463

ables are also improved, with the posterior located closer to the reference464

point than the line origins for u, v and SSH, although the improvements465

are not as large as for PDA and PBDA. Chlorophyll and ocean currents are466

strongly coupled in the advection/diffusion equation while temperature does467

not appear in the equations for NPZD model. Hence, chlorophyll observa-468

tions have a more substantial impact on u,v and SSH.469

In the right panel in Figure 6, results from BDA and PBDA indicate im-470

provements in the statistics for all biological variables. As expected, phyto-471

plankton, the observed variable, exhibits the greatest improvement, showing472

a normalized standard deviation close to 1 and correlation coefficient greater473

than 0.9. The statistics of the unobserved variables are also improved, al-474

though not as much as for P . Improvements in the biological error statistics475

from BPDA are greater than those for BDA, and more so than improvements476

in the physical error statistics by PBDA over PDA; this result indicates again477

the significant role that the physical state has on biological fields but not the478

reverse. Results from PDA show the least improvement in biological vari-479
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ables.480

4.3. Sensitivity to observational errors481

The performance of data assimilation is dependent on the error levels. We482

conduct a sensitivity test with varied observational error levels for SST and483

phytoplankton. When observational error for SST is increased from 0.1◦C484

to 0.4◦C, the RMSE for SST is elevated by approximately 50% (PDA(0.1,485

N/A) versus PDA(0.4, N/A) in Figure 7). Higher SST observational error486

also influences the estimation of surface currents and SSH, increasing RM-487

SEs more than 20%. The RMSEs for physical variable are less sensitive to488

the phytoplankton observational error (BDA(N/A, 20%) versus BDA(N/A,489

35%) versus BDA(N/A, 50%) in Figure 7). BDA reduces the RMSEs for490

physical variables with respect to the free run even when the phytoplankton491

observational error level is 50%. The sensitivity of PBDA to the observa-492

tional error can be considered as the mixed response of PDA and BDA to493

the changes in observational error for SST and phytoplankton, respectively494

(PBDA(0.1, 20%) versus PBDA(0.4, 35%) versus PBDA(0.4, 50%) in Figure495

7).496

Changing observational error for SST does not provide a statistically497

significant impact on the RMESs for biological variables (PDA(0.1, N/A)498

versus PDA(0.4, N/A) in Figure 8). Higher phytoplankton observational499

error degrades the estimation of phytoplankton by elevating the RMSE by500

more than 15%, which is statistically significant (BDA(N/A, 20%) versus501

BDA(N/A, 35%) versus BDA(N/A, 50%) in Figure 8). Other biological502

variables do not have the influence of higher phytoplankton observational503

error as much as phytoplankton, showing less than 10% RMSE increase. As504
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for physical variables, the sensitivity of PBDA to the observational error505

can also be viewed as the mixed response of PDA and BDA to the changes506

in observational error for SST and phytoplankton (PBDA(0.1, 20%) versus507

PBDA(0.4, 35%) versus PBDA(0.4, 50%) in Figure 8). It is noted that higher508

phytoplankton observational error does not always degrade the estimation for509

the biological variables. For instance, BDA(N/A, 50%) shows smaller RMSE510

for P than BDA(N/A, 35%). We attribute this to the observation filtering511

process discussed in subsection 3.3. More outlying observations are rejected512

in BDA(N/A, 50%) than in BDA(N/A, 35%), and eventually the filter helps513

the data assimilation run fit observations better, leading to smaller RMSE.514

4.4. Sensitivity to the model errors515

The performance of coupled physical and biological data assimilation is516

also evaluated under the presence of model errors. In this sensitivity test,517

the control run is PBDA with 0.4◦C and 35% observational errors for SST518

and phytoplankton, respectively. We refer to EF as error free, EP as error in519

physics (in which the wrong year’s surface forcing has been introduced), EB520

as error in biology (with different NPZD model parameters than the reference521

run), and EPB as error in physics and biology. PBDA results in higher522

RMSEs in the observed variables, SST and SSH, when the surface forcing of523

the year 2002 is used in the assimilative run for the year 2001, but RMSEs524

are still considerably lower than that of the free run in which no model525

error is included (PBDA, EF versus PBDA, EP in Figure 9). However, the526

introduced physical model error degrades the estimation of surface currents:527

RMSEs of PBDA, EP for u and v are greater than that of the free run with528

no model error. The impact of biological model error to physical variables529
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is not statistically significant. Using incorrect biological parameter values in530

PBDA does not change RMSEs for all physical variables (PBDA, EP versus531

PBDA, EPB in Figure 9).532

Estimating the biological state can be influenced by both physical and533

biological model errors. Using the wrong forcing degrades the estimate of534

biological variables, leading higher RMSEs (PBDA, EF versus PBDA, EP in535

Figure 10). The degradation is particularly strong for N and D, resulting in536

higher RMSEs than those from the free run. The introduced biological model537

error also has statistically significant impact on the estimation of biological538

variables. Using wrong parameter values and surface forcing increased the539

RMSE for phytoplankton, although it is still slightly smaller than that from540

the free run with no model error (PBDA, EF versus PBDA, EP versus PBDA,541

EPB in Figure 10). However, our model errors result in higher RMSEs for542

unobserved biological variables. Including both physical and biological errors543

makes the RMSEs for Z, N and D greater with respect to the free run. The544

most substantial impact is observed in Z and is perhaps results from the fact545

that two of four modified parameters are associated with the zooplankton546

dynamics.547

The incremental form of 4DVar used here does not allow easily for the548

accurate computation of posterior error estimates. The posterior error co-549

variance is equivalent to the inverse of Hessian matrix (Moore et al., 2012).550

Here, the inverse of Hessian matrix is estimated as VT−1VT , where V is the551

orthogonal matrix with Lanczos vectors, and T is the symmetric tridiagonal552

matrix that contains coefficients in Lanczos recurrence relation (Song et al.,553

2016a). The Hessian matrix is approximated by a tridiagonal factorization554
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using the Lanczos vectors, and represents a reduced approximation. The555

leading eigenvectors of the Hessian matrix can be estimated from the Lanc-556

zos vectors but these would represent the smallest eigenvectors of the analysis557

error covariance. Therefore, this calculation provides a poor representation of558

the analysis error covariance matrix. One can consider other effective meth-559

ods (e.g. Daescu and Navon, 2007, a reduced second order adjoint model)560

for the estimation of Hessian, but the inverse of the Hessian matrix is still561

approximated with the least important orthogonal vectors. We note that562

that ROMS does provide options to estimate the posterior error covariance563

in dual form (Moore et al., 2012), but that is not the form used in this study.564

5. Summary and Discussion565

We have developed and investigated combined physical and biological 4-566

dimensional variational data assimilation in an ocean model. Biological data567

assimilation benefits from a unique approach because of the non-Gaussian568

statistics of biological variables and their errors. We have assumed lognor-569

mal statistics for these variables and applied the quadratic formulation of the570

incremental approximation developed by Song et al. (2016a). Assimilation571

of variables having different error statistics is required for combined physi-572

cal and biological assimilation and proceeds here following the approach of573

Fletcher (2010) and Fletcher and Jones (2014).574

In model twin experiments using ROMS and a 4-component, NPZD575

ecosystem model configured for the realistic California Current System, we576

investigated how coupled biological and physical data assimilation improves577

overall estimates of the combined physical and biological ocean state. Ob-578
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servations were drawn from a forward model run which represented the true579

ocean state with errors drawn from distributions with known statistics added.580

Three observation sampling strategies were chosen: (1) biological observa-581

tions, (2) physical observations, and (3) both biological and physical ob-582

servations. Then we altered the model state through adjustment of initial583

conditions in physical and/or biological variables using those observations.584

Statistics of RMSE, correlation coefficients, state variability were analyzed585

from a total of 48 sequences of six 5-day assimilation cycles.586

We found that assimilation of physical data (PDA) improves model-data587

misfit of physical variables, and assimilation of biological data (BDA) re-588

duces model error for biological variables. Such results should be expected.589

In addition, PDA resulted in biological error reduction, and BDA yielded590

improvements in the physical variable misfit. Even though PDA has no ef-591

fect on biological initial conditions, it does influence biological variables over592

the entire assimilation cycle through improvements to the physical fields593

which then feed back on biological variables through tangent linear (and594

forward) model advection and diffusion. In contrast, a change in biological595

initial conditions, for example resulting from BDA, has no influence on phys-596

ical variables through the forward model directly. However, BDA influences597

physical variable initial conditions through coupled dynamics included in the598

adjoint model. The coupled data assimilation system partitions changes to599

all control vector elements that can reduce error in the biological data misfit,600

and this partitioning extends to both biological and physical variables. This601

conceptual division of influence is drawn schematically in Figure 11.602

Overall, the greatest performance in both physical and biological fields603
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as quantified by various measures resulted from the combined assimilation of604

physical and biological data (PBDA), further supporting the interpretation605

of the PDA and BDA results. While physical observations provide the most606

effective constraint for physical variables, and biological observations most607

constrain biological variables, additional improvement in physical variables608

derived from biological information through model adjoint dynamics and bi-609

ological errors can be reduced through physical observations via the tangent610

linear (and forward) model. Higher observational errors in SST and phyto-611

plankton increase the RMSEs of PBDA, but the increase is smaller than the612

combined increments in RMSE of PDA with higher SST observational er-613

ror and of BDA with higher phytoplankton observational error. Introducing614

model errors (through the application of incorrect surface forcing or altered615

biological parameters) also degrades the performance of PBDA, but its im-616

pact on PBDA is not particularly different from that for PDA and BDA on617

a monthly time scale.618

More generally, variables in a coupled 4DVar system can be influenced619

in two ways, dynamically through the adjoint and tangent linear models620

and statistically through covariances of the background error covariance ma-621

trix. In this study, univariate spatial correlations in fields were assumed622

through the integration of a diffusion equation; however, no multivariate623

correlations were represented, and therefore all improvements resulting from624

observations of coupled variables resulted exclusively from adjoint and tan-625

gent linear model dynamics. These coupling dynamics are not included in626

alternate data assimilation approaches based on statistical estimation alone,627

and statistical correlations between physical and biological variables provide628
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the only way to transfer this critical information. These correlations are not629

well-known in nature, though some groups have reported such information630

(Behrenfeld et al., 2006), and estimates that are consistent with the ocean631

circulation and in principle ecosystem models can be calculated from forward632

model calculations (Shulman et al., 2013). Ensemble-based data assimilation633

approaches use the ensemble to estimate time-dependent correlations (Simon634

et al., 2015), usually with an inflation factor and localization to compensate635

the effects of having a small ensemble. We would expect that the present636

4DVar assimilation approach would further benefit from better background637

error covariance estimates, a subject for future study.638

The variational approach to coupled dynamics with mixed statistics pre-639

sented here is conceptually straightforward to implement within any existing640

coupled system equipped with tangent and adjoint models and assuming no641

multivariate correlations between physical and biological variables. The com-642

putational cost of the combined physical and biological system is comparable643

to the cost of either the physical or biological system in isolation. Results644

from this study suggest that coupled assimilation using 4DVar is practical645

and realizable. However, the twin experiment framework used here repre-646

sents an idealized setting in which the data is unencumbered by cloud cover647

and the model surface forcing and boundary conditions are error free.648

Our conclusions are drawn based on the ensemble of 30-day assimilation649

(6 cycles). It is possible that the model may drift from the truth if biases650

are introduced by assimilation and accumulate over time scales longer than651

one month. In our ideal twin experiment, error is introduced in the initial652

conditions only and estimating accurate initial conditions always improves653
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the model bias. Indeed, the model bias does not increase for more than 6654

months when we tested the data assimilation system using 48 cycles (not655

shown). However, in realistic scenarios in which errors in surface forcing,656

boundary forcing, and model construction exist, it is possible that model657

bias develops more rapidly. Such an issue does not appear in Song et al.658

(2016b), but further studies of model bias in realistic scenarios over long659

periods of time is warranted.660

When assimilating real observations, the presented assimilation system661

may encounter obstacles. For instance, the model dynamics inevitably mis-662

represent or entirely miss important processes in nature. Under these circum-663

stances, adjustments to the initial conditions determined by model dynamics664

are of limited value in matching observations. Large differences between the665

observed and prior state can also create an issue because they violate the666

linearization of log-transformation function and may prevent solution con-667

vergence. In order to prevent this outcome, the coupled assimilation system668

requires a filtering process that excludes observations far from the prior. The669

filtering process may reduce the number of observations, but it stabilizes the670

assimilation system and may lead to a better posterior solution as shown671

in subsection 4.3. We note that the filtering procedure is reevaluated during672

each outer loop of the assimilation system, and observations that are rejected673

initially may be included in the final outer loop.674

In a companion paper Song et al. (2016b), we investigate the assimila-675

tion system’s performance in a more realistic system in which real remotely676

sensed and in situ physical and ecosystem data are assimilated. In that real-677

istic setting, improvements to RMSE for physical variables is not improved678
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by assimilating real chlorophyll observations. Several factors may account679

for this result that stands in contrast to that offered by the twin experi-680

ments here. Data availability is reduced relative to this study as frequent681

cloud cover prevents collection of SST and chlorophyll data over much of our682

domain. In addition, physical and biological model error are likely greater683

than that considered in the present study. Even though the real assimila-684

tion experiment is carried out on a higher resolution grid that better resolves685

the CCS mesoscale circulation, the physical model is still imperfect relative686

to nature. The NPZD ecosystem model used is advantageous for its rela-687

tive simplicity, and has been applied to multiple realistic studies of ocean688

biogeochemistry, including in the CCS (Powell et al., 2006). However, with689

only one phytoplankton functional group, it is less than ideal in representing690

the multiple phytoplankton communities in different geographical regions of691

the CCS. Assimilation improvements may result from application of a more692

complex biogeochemical model. At this time, we do not know which of693

these elements is responsible for the differences between the two studies, but694

the present study shows that under excellent conditions in which a model695

is nearly able to represent truth and observations are abundant, the lowest696

RMSE for physical and biological variables results from assimilation of both697

biological and physical variables into the coupled system.698
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Köhl, A., Stammer, D., Cornuelle, B. D., 2007. Interannual to decadal820

changes in the ECCO global synthesis. J. Phys. Oceanogr. 37, 313–337.821

Kurapov, A. L., Foley, D., Strub, P. T., Egbert, G. D., Allen, J. S., 2011.822

Variational assimilation of satellite observations in a coastal ocean model823

off Oregon. J. Geophys. Res.: Oceans 116 (C5).824

Lewis, M., Carr, M., Feldman, G., Esaias, W., McClain, C., 1990. Influence825

of penetrating solar radiation on the heat budget of the equatorial Pacific826

Ocean. Nature 347 (6293), 543–545.827

Losa, S., Kivman, G., Ryabchenko, V., 2004. Weak constraint parameter828

estimation for a simple ocean ecosystem model: What can we learn about829

the model and data? J. Marine Syst. 45, 1–20.830

Matear, R. J., 1995. Parameter optimization and analysis of ecosystem mod-831

els using simulated annealing: A case study at Station P. J. Mar. Res.832

53 (4), 571–607.833

37



Mattern, J., Fennel, K., Dowd, M., 2012. Estimating time-dependent param-834

eters for a biological ocean model using an emulator approach. J. Marine835

Syst. 96–97, 32–47.836

Matthews, D., Powell, B. S., Janekovi, I., 2012. Analysis of four-dimensional837

variational state estimation of the hawaiian waters. J. of Geophys. Res.:838

Oceans 117 (C3).839

Miller, A. J., Di Lorenzo, E., Neilson, D. J., Cornuelle, B. D., Moisan, J. R.,840

2000. Modeling CalCOFI observations during El Niño: Fitting physics and841

biology. Calif. Coop. Ocean. Fish. Invest. Rep. 41, 87–97.842

Moore, A., Arango, H., Broquet, G., Edwards, C. A., Veneziani, M., Pow-843

ell, B., Foley, D., Doyle, J., Costa, D., Robinson, P., 2011a. The Regional844

Ocean Modeling System (ROMS) 4-dimensional variational data assimila-845

tion systems, Part III: Observation impact and observation sensitivity in846

the California Current System. Prog. Oceanogr. 91, 74–94.847

Moore, A. M., Arango, H. G., Broquet, G., 2012. Estimates of analysis and848

forecast error variances derived from the adjoint of 4D-Var. Mon. Wea.849

Rev. 140, 3183–3203.850

Moore, A. M., Arango, H. G., Broquet, G., Edwards, C. A., Veneziani, M.,851

Powell, B. S., Foley, D., Doyle, J., Costa, D., Robinson, P., 2011b. The852

Regional Ocean Modeling System (ROMS) 4-dimensional variational data853

assimilation systems, Part II: Performance and application to the Califor-854

nia Current System. Prog. Oceanogr. 91, 50–73.855

38



Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Zavala-Garay,856

J., Weaver, A. T., 2011c. The Regional Ocean Modeling System (ROMS)857

4-dimensional variational data assimilation systems, Part I: Formulation858

and Overview. Prog. Oceanogr. 91, 34–49.859

Moore, T. S., Campbell, J. W., Dowell, M. D., 2009. A class-based approach860

to characterizing and mapping the uncertainty of the MODIS ocean chloro-861

phyll product. Remote Sens. Environ. 113 (11), 2424–2430.862

Morel, A., 1988. Optical modeling of the upper ocean in relation to its863

biogenous matter content (case i waters). J. Geophys. Res.: Oceans864

93 (C9), 10749–10768.865

URL http://dx.doi.org/10.1029/JC093iC09p10749866

Murtugudde, R., Beauchamp, J., McClain, C. R., Lewis, M., Busalacchi,867

A. J., 2002. Effects of penetrative radiation on the upper tropical ocean868

circulation. J. Climate 15 (5), 470–486.869

Natvik, L. J., Evensen, G., 2003. Assimilation of ocean colour data into870

a biochemical model of the North Atlantic: Part 1. Data assimilation871

experiments. J. Marine Syst. 40-41, 127–153.872

O’Carroll, A. G., August, T., Borgne, P. L., Marsouin, A., 2012. The accu-873

racy of SST retrievals from Metop-A IASI and AVHRR using the EUMET-874

SAT OSI-SAF matchup dataset. Remote Sens. Environ. 126, 184–194.875

Oke, P., Brassington, G., Griffin, D., Schiller, A., 2008. The Bluelink ocean876

data assimilation system (BODAS). Ocean Modell. 21, 46–70.877

39
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Table 1: A list of parameters for the NPZD model that is chosen differently in the as-

similation runs to include the biological model error. The columns from the left to the

right represent names, units, values in the true run and values for biological model error,

respectively. The parameter values for the biological model error are from the study for

Gulf of Alaska in Fiechter et al. (2011).

Parameter name unit Value, True Value, EB

Uptake rate for nitrate day−1 1.0 0.8

Zooplankton grazing rate day−1 0.65 0.4

Ivlev constant Dimensionless 0.4 0.84

Detritus remineralization rate Dimensionless 0.1 0.2

Veneziani, M., Edwards, C. A., Moore, A. M., 2009. A central california947

coastal ocean modeling study: 2. adjoint sensitivities to local and remote948

forcing mechanisms. J. Geophys. Res. 114, C04020.949

Weaver, A., Courtier, P., 2001. Correlation modelling on the sphere using a950
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Figure 1: Normalized bias of the simulated (a) SST and (c) surface chlorophyll that

are assumed as the truth in a twin experiment, and their correlation coefficients (b, d).

Monthly mean values from the model and the satellite observation AVHRR (SeaWiFS),

as the reference states for SST (surface chlorophyll), are considered in the calculation.
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Figure 2: Root-mean-squared error (RMSE) of u, v, SST and SSH at the surface in the

four different simulation: Free run (blue), analysis by the PDA (light blue), analysis by

the BDA (white), analysis by the PBDA (light red). Red bar represents the one-month

persistence RMSE. Error bars represent standard error from 1200 days (25 days × 12

months × 4 years).
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(a) u, PDA (b) v, PDA (c) SST, PDA (d) SSH, PDA

(e) u, BDA (f) v, BDA (g) SST, BDA (h) SSH, BDA

(i) u, PBDA (j) v, PBDA (k) SST, PBDA (l) SSH, PBDA

Figure 3: The ratio of the physical variables’ RMSEs between data assimilation runs and

free run. Smaller than 1 (cold colors) represents the reduction of the RMSE while larger

than 1 (warm colors) corresponds to the increased RMSE. White areas with the value

1 mean no change in the RMSE. Top, middle and bottom rows are for PDA, BDA and

PBDA, respectively, and the columns represent u, v, SST and SSH from the left to the

right.
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Figure 4: Same as Figure 2, but RMSE of P, Z, N and D at the surface.
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(a) P, PDA (b) Z, PDA (c) N, PDA (d) D, PDA

(e) P, BDA (f) Z, BDA (g) N, BDA (h) D, BDA

(i) P, PBDA (j) Z, PBDA (k) N, PBDA (l) D, PBDA

Figure 5: Same as Figure 3, but RMSE of P, Z, N and D at the surface.
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Figure 6: Taylor diagram showing the improvements of three statistical values in (left)

physical and (right) biological variables. Each line shows the statistical improvement by

data assimilation. The dots represent the statistical states of the prior solution, and square,

triangular and circular terminators represent the statistical states of the posterior solution

from PDA, BDA and PBDA, respectively. Physical variables on the right panel include u

(blue), v (cyan), SST (dark green) and SSH (red). On the right panel, lines represent P

(blue), Z (cyan), N (dark green) and D (red). Black dots represent the reference or true

states.
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Figure 7: The RMSEs for u, v, SST and SSH (from the left to the right) in the year

2001. The RMSEs at the bottom are from the free run, overlaid by RMSEs from data

assimilation runs whose observational errors for SST and phytoplankton are indicated in

the parenthesis. For example, PBDA(0.4, 50%) is the data assimilation run where the SST

and phytoplankton observational errors are 0.4◦C and 50%, respectively. ‘N/A’ indicates

that the corresponding observation is not assimilated.
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Figure 8: Same as Figure 7, but for P, Z, N and D.
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Figure 9: The RMSEs for u, v, SST and SSH (from the left to the right) in the year

2001. The RMSEs at the bottom are from the free run with no model error, overlaid by

RMSEs from data assimilation runs whose observational errors for SST, phytoplankton

and the label associated with the model error are indicated in the parenthesis. The labels

‘EF’, ‘EP’ and ’EPB’ represent ‘Error Free’, ‘Error in Physics’ and ‘Error in Physics and

Biology’, respectively. The physical model error is introduced by using surface forcing of

the year 2002, and the biological model error comes from different biological parameter

values in the assimilation runs (Table 1).
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Figure 10: Same as Figure 9, but for P, Z, N and D.
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Figure 11: Diagram that shows the flow of the information from observations. Physical

observations (Obs.) provide the information to adjust the physical initial condition (IC).

This information is spread to biological variables through advection and diffusion. Bio-

logical observations provide the information to adjust both physical and biological initial

condition. This is because the dynamics in the adjoint model pass the information only

from biological component to physical component in the coupled system used in this study.
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